

# MATHEMATICS APPLICATIONS YEAR 12 Test 1 2016 Bivariate Data

STUDENT'S NAME SOLUTIONS

**DATE**: Friday 26<sup>th</sup> February **TIME**: 50 minutes **MARKS**: 46

**INSTRUCTIONS:** 

Standard Items: Pens, p

Pens, pencils, drawing templates, eraser

Special Items: Three approved calculators, 1 A4 page of notes

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Blank page

### 1. (3 marks)

The coefficient of determination between the variables x and y is 0.85 and the line of regression of y on x is y = -0.46x + 5.3.

Which of the following statements must be true?

A: The correlation coefficient between *x* and *y* is 0.92. The response variable is *y* and the explanatory variable is *x*.

C: The regression line passes through 85% of the points

D: The correlation coefficient between x and y is  $-(0.85^2)$ 

 $\stackrel{\textstyle \frown}{}$  85% of the variation in y can be explained by the variation in x.

As x decreases y increases.

G: 85% of the variation in x can be explained by the variation in y.

## 2. (5 marks)

A survey was conducted on the relationship between gender and TV show preference (movies or sport)

The results are shown below in the segmented column graph.



- (a) For this survey, determine
  - (i) The explanatory variable

[1]

GENDER

(ii) The response variable

[1]

TV SHOW

(b) For this survey, is there any association between the two variables? Explain your answer.

[3]

MALES PREFER SPORT FEMALES PREFER MOVIES

#### 3. (12 marks)

A survey was conducted to determine whether being in a specific year group will be associated with students having a part time job.

The information collected is shown in the table below.

|         | Part time job | No job |
|---------|---------------|--------|
| Year 10 | 28            | 45     |
| Year 11 | 31            | 35     |
| Year 12 | 42            | 39     |

State the explanatory variable and the response variable. (a)

[2]



RESPONSE PART TIME JOB

(b) Convert the two-way table above into a column or row percentage table appropriate to the explanatory/response variables. [3]

|         | Part time | No job |      |
|---------|-----------|--------|------|
| Year 10 | 38%       | 62 %   | 100% |
| Year 11 | 47%       | 53%    | 100% |
| Year 12 | 52%       | 48%    | 100% |
|         |           |        |      |

[4]



(d) For this survey, is there any association between the two variables? Explain your answer. [3]

YES

THE OLDER STUDENTS HAVE MORE PART TIME JOBS
THE OLDER STUDENTS HAVE LESS OF NO JOBS

## 4. (17 marks)

The statistics below show the age of a company's employees and the number of absent work days in the last year.

|                 |    |    |    |    |    |    | 1   | ,  |    |    |
|-----------------|----|----|----|----|----|----|-----|----|----|----|
| Age (a)         | 22 | 46 | 38 | 27 | 51 | 28 | 36/ | 50 | 34 | 44 |
| Absent days (d) | 10 | 3  | 6  | 9  | 4  | 8  | 37  | 3  | 7  | 2  |
|                 |    |    |    |    |    |    | / \ |    |    |    |

(a) Identify the outlier and remove it from any further calculations

[1]

- (b) Determine
  - (i) The correlation coefficient between age and days absent

[1]

$$T = -0.94$$

(ii) The equation of the line of regression of d on a

[1]

(c) Describe the value of the correlation coefficient

[2]

[1]

[2]

(d) (i) As age increases, in general, what happens to the number of days absent? [1]

DECREASE

(iii) What precise mathematical evidence confirms your answer to (d) (i)?

REGRESSION LINE GRADIENT NEGATIVE

(e) Determine the coefficient of determination and explain what information this reveals.

 $\tau^2 = 0.88$ 

(f) Determine the centroid.

[1]

(g) Predict the number of absent work days for an employee who was 57 years old.

(h) Comment on the prediction in (g)

[2]

[1]

(i) What change would be expected in the number of absent work days for an employee over 8 years. Justify your answer. [2]

(j) The boss of this company was heard to say that the number of absent work days was directly attributable to the age of the worker. Comment on this statement. [2]

# 5. (9 marks)

The table below shows pairs of readings of M and t obtained from an experiment.

| t        | 2    | 4    | 5     | 8     | 14   | 16    | 18   | 22    |
|----------|------|------|-------|-------|------|-------|------|-------|
| M        | 4.3  | 5.5  | 5.4   | 9.2   | 16.5 | 16.4  | 20.3 | 23.1  |
| Residual | 0.81 | 0.02 | -1.08 | -0.27 | 1.05 | -1.05 | 2.86 | -0.34 |

(a) Determine the least squares regression line of M on t.

[2]

$$M = 0.997T + 1.491$$

(b) Complete the row of residuals in the table.

[2]

(c) On the axes below, draw the graph of the residuals for M

[3]



(d) Comment on the appropriateness of a linear relationship between M and t.

LINEAR RELATIONSHIP APPROPRIATE
NO PATTERN IN RESIDUALS

[2]